180 research outputs found

    Invariant Finite-Difference Schemes for Cylindrical One-Dimensional MHD Flows with Conservation Laws Preservation

    Full text link
    On the basis of the recent group classification of the one-dimensional magnetohydrodynamics (MHD) equations in cylindrical geometry, the construction of symmetry-preserving finite-difference schemes with conservation laws is carried out. New schemes are constructed starting from the classical completely conservative Samarsky-Popov schemes. In the case of finite conductivity, schemes are derived that admit all the symmetries and possess all the conservation laws of the original differential model, including previously unknown conservation laws. In the case of a frozen-in magnetic field (when the conductivity is infinite), various schemes are constructed that possess conservation laws, including those preserving entropy along trajectories of motion. The peculiarities of constructing schemes with an extended set of conservation laws for specific forms of entropy and magnetic fluxes are discussed.Comment: 29 pages; some minor fixes and generalizations + Appendix containing an additional numerical schem

    Group analysis of a class of nonlinear Kolmogorov equations

    Full text link
    A class of (1+2)-dimensional diffusion-convection equations (nonlinear Kolmogorov equations) with time-dependent coefficients is studied with Lie symmetry point of view. The complete group classification is achieved using a gauging of arbitrary elements (i.e. via reducing the number of variable coefficients) with the application of equivalence transformations. Two possible gaugings are discussed in detail in order to show how equivalence groups serve in making the optimal choice.Comment: 12 pages, 4 table

    Group classification of the two-dimensional magnetogasdynamics equations in Lagrangian coordinates

    Full text link
    The present paper is devoted to the group classification of magnetogasdynamics equations in which dependent variables in Euler coordinates depend on time and two spatial coordinates. It is assumed that the continuum is inviscid and nonthermal polytropic gas with infinite electrical conductivity. The equations are considered in mass Lagrangian coordinates. Use of Lagrangian coordinates allows reducing number of dependent variables. The analysis presented in this article gives complete group classification of the studied equations. This analysis is necessary for constructing invariant solutions and conservation laws on the base of Noether's theorem

    Lie group analysis of a generalized Krichever-Novikov differential-difference equation

    Full text link
    The symmetry algebra of the differential--difference equation u˙n=[P(un)un+1un1+Q(un)(un+1+un1)+R(un)]/(un+1un1),\dot u_n = [P(u_n)u_{n+1}u_{n-1} + Q(u_n)(u_{n+1}+u_{n-1})+ R(u_n)]/(u_{n+1}-u_{n-1}), where PP, QQ and RR are arbitrary analytic functions is shown to have the dimension 1 \le \mbox{dim}L \le 5. When PP, QQ and RR are specific second order polynomials in unu_n (depending on 6 constants) this is the integrable discretization of the Krichever--Novikov equation. We find 3 cases when the arbitrary functions are not polynomials and the symmetry algebra satisfies \mbox{dim}L=2. These cases are shown not to be integrable. The symmetry algebras are used to reduce the equations to purely difference ones. The symmetry group is also used to impose periodicity un+N=unu_{n+N}=u_n and thus to reduce the differential--difference equation to a system of NN coupled ordinary three points difference equations
    corecore